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Simple considerations of the molecular-weight dependences of the intrinsic viscosity and melt viscosity of 
chain polymers are given. 
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I N T R O D U C T I O N  

Since the discovery of the existence of macromolecules, 
the molecular-weight dependence of the viscosity of chain 
polymers has been an important subject in polymer 
physics. Therefore, numerous articles have been pub- 
lished on the subject 1. Nevertheless, it is worth trying to 
clarify interesting physics behind the molecular-weight 
dependence. 

Among many problems concerning the molecular- 
weight dependence of the viscosity of chain polymers, we 
shall discuss here only the two extreme cases : the intrinsic 
viscosity in the dilute limit and the melt viscosity in the 
opposite limit. 

For  our purpose, we shall ignore polydispersity, 
chain stiffness, branching and other complicating factors. 
These factors affect the molecular-weight dependence, 
but we shall consider only flexible chains based on a 
pearl-necklace model. In this model, each chain consists 
of N segments, and each segment is a sphere of diameter 
a and has a bond length b. With this model, we shall 
show that the two limiting cases can be treated in an 
equally simple way. Our consideration will be in the 
limiting case of zero shear rate. In this limit, the 
deformation of chains may be ignored. 

INTRINSIC VISCOSITY 

As is well known 1, the molecular-weight dependence of 
the intrinsic viscosity of chain polymers is expressed by : 

[r/] = K N  ~ (1) 

where K is a constant, and the exponent g is around 0.7. 
This variation has been attributed to the excluded- 
volume effect by Flory 2, who utilized Einstein's viscosity 
formula for a spherical solute: 

It/] = 2.5Novs/M (2) 

where N O is Avogadro's number, M is the molecular 
weight and v s is the volume of the solute. For  a flexible 
chain : 

V s ~ R 3 , ~  N 3 v  (3) 
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where v = 0.598 in the presence of the excluded-volume 
effect. Hence : 

[Y/] ,~ N ° '794 ( 4 )  

The excluded-volume effect is expected to vary with 
the flexibility of the chain. However, when the chain is 
stiff, the molecular shape may deviate from the spherical 
shape that is expected from a random-walk model, and 
can even be rod-like. In such a case, both microscopic 
and macroscopic calculations show that the intrinsic 
viscosity varies strongly with the rod length 3. Therefore, 
there can be cases in which the viscosity exponent exceeds 
the above value of 0.794. We shall not discuss cases in 
which such deviations from Flory's limit appear, as it has 
already been reviewed 4. Instead, we shall be concerned 
only with a randomly coiled shape. 

As discussed 5 by Kirkwood and Riseman (KR) and 
by Debye and Bueche, the hydrodynamic interactions 
between the segments can cause a molecular-weight 
dependence because outer segments of a polymer shield 
inner segments from the fluid flow. This effect has been 
considered independently of the excluded-volume effect, 
but we note that both effects originate from the finite size 
of the segments. In fact, in the absence of this finite size, 
there will be no hydrodynamic effect. Hence, it is 
appropriate to take both effects into consideration 
simultaneously. 

In order to take both effects into consideration, it is 
convenient to introduce a force field in space represented 
by F ( r )  with reference to the centre of a polymer 4. The 
KR integral equation can then be modified into a similar 
integral equation for this force defined in space. This 
equation depends on the pair segment distribution 
function referred to the centre of gravity of a reference 
polymer. Such a distribution function can be evaluated 
in the presence of the excluded-volume effect 6. 

Instead of pursuing this integral equation approach, 
it is advantageous to adopt an intuitive method for 
interpreting the intrinsic viscosity behaviour. Let us 
consider a representative segment of a polymer in a 
laminar flow with a velocity gradient q. This segment is 
located at position R with reference to the centre of 
gravity. R is expected to be of the order of the radius of 
gyration. As such, we expect: 

R = NVb (5) 

where v = 3/5 in good approximation. 
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The laminar flow at the position R has a speed qR in 
an approximate order of magnitude. Under the influence 
of this flow, the segment will rotate about the centre of 
the given polymer. The order of magnitude of this 
rotational velocity is v ° ( R ) = q R  if there is no 
hydrodynamic interaction. In its presence, the velocity 
will be reduced by a factor 1/(1 + A N ~ R )  because 
velocity v is given by 5 : 

v ( R ) = v ° ( R )  - (N Cvt,~ ,w~. ) d r _  1 VRp 
4~qo~o d IR - rl 2r/o 

in which the last term is small. Here w(r) is a segment 
distribution function and p is the Oseen pressure. The 
energy loss that is carried by the fluid per unit time per 
unit volume is then (qR)2 / (1  + A N b / R ) .  

On the other hand, a uniform fluid with viscosity q in 
a laminar flow of velocity gradient q dissipates energy at 
a rate qq2 per unit time per unit volume. In the present 
case in which the dissipation due to the polymer is being 
investigated, the rate is ( r / -  r/o )q2, where qo is the solvent 
viscosity. 

Hence, equating the two energy-loss expressions, we 
arrive at : 

[q]  = KN2V/(1 + A N ~ R )  (6) 

Thus, with equation (5) we obtain: 

[r/] = KN6/5/(1  + A N  2/5) (7) 

We remark that in effect equation (6) represents only 
a modification of the free-draining result of Debye in 
terms of an effective hydrodynamic effect, which varies 
as l / R ,  where R is an average end-to-end distance. The 
exponent v = 3/5 corresponds to Flory's approximation 
to the volume effect, and for N ~ ~ ,  equation (7) agrees 
with Flory's expression. However, for relatively small N, 
a stronger N variation can be expected. The intrinsic 
viscosity formula can be tested experimentally by plotting 
N2V/['?/] against N z-v. We remark that equation (6) is 
consistent with the form obtained by Peterlin 7, according 
to which a plot of N/ [ r / ]  against N 1/2 should be linear. 

MELT VISCOSITY 
Another interesting molecular-weight dependence has 
been observed in melt viscosity. For  a wide range of chain 
polymers, it has been found thatS : 

q = K N  ~ (8) 

where 

~1.0, N < N¢ 

x = (3.4, N > N¢ 

Melt viscosity is a complex quantity, and in fact there 
are cases in which deviations from the above simple 
power law are observed 9. Moreover, the transition may 
not occur at a point at Arc but rather for a certain interval 
of molecular weight. In such cases, the 'critical' number 
N¢ must be determined by extrapolation from both sides 
of the region. In spite of these details, it is remarkable 
that such a simple power law holds for a wide range of 
chain polymers. 

The above empirical power law has been considered 
by several authors 1°. In particular, Bueche attributed the 
dependence to molecular entanglements, with a slippage 
effect. He considered a hierarchy of molecular entangle- 
ments, a portion of which has a slippage motion in 

addition to the usual type of motion. Therefore, his final 
result was expressed in terms of an infinite series. 
Although he obtained a power 3.5 in the long-chain limit, 
it is somewhat difficult to interpret this particular power 
in relation to the experimental value 3.4. Therefore, it 
seems worth giving a simple and direct interpretation of 
this power. 

We picture a polymer melt as a uniform fluid. If this 
fluid has viscosity r/and is subject to a laminar flow with 
a velocity gradient q, the energy loss per unit time and 
unit volume is equal to r/q 2 as before. In this fluid, the 
segments are distributed more or less uniformly. For  our 
pearl-necklace model, the segmental density is of the 
order of 1/(a2b). The energy loss of this fluid originates 
from the motion of effective moving units. 

For  small molec9iar weights, molecular entanglements 
may not be strong. In this case, each polymer moves 
independently of i other polymers, and each segment 
constitutes the effective unit for energy dissipation. The 
laminar flow at position R of a representative segment of 
a polymer will have a speed qR. The segment will rotate 
about the centre at a speed that is effectively equal in 
magnitude to qR. We assume that it encounters a 
resistance (qR. Hence, the energy loss per unit time per 
unit volume is ( ( qR) 2 / ( a2b ) .  Equating this with r/q 2, we 
find : 

q = ~R2/(a2b) ~ N 1"° (9) 

if R ,.~ N z/2 is assumed. 
For  long chains with molecular entanglements, clusters 

of polymers have to be considered in place of the previous 
case with single polymers. Hence, an effective unit for 
energy dissipation is enlarged by a factor of order N so 
that its friction coefficient becomes N(. In contrast to 
the previous case, the average distance of this unit from 
the centre of a molecular cluster is enlarged to R ( R / b )  
with a scaling factor Rib .  Hence, equation (9) is modified 
to • 

t 1 = ( S R g / ( a 2 b  3) ~ N a'4 (10) 

since equation (5) can be used for large N. It appears 
that on average the above scaling with a factor N is valid 
even though deviations can take place. O n  the other 
hand, there is evidence that v equals 1/2 in concentrated 
solutions. Hence, in this case: 

,7 ~ N 3 ( 1 1 )  
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